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Let G be a bounded convex set, and [; the projection onto G, and
{gj) a bounded random process. Projected algorithms of the types )g“ a"
Ng(XE + € b(XE,¢)) (or X ., = Ng(X, + 8, b(X,,t.), where 0 < a, =0, [a,
= ®) occur frequently in applications (among other places) in control and
communications theory. The asymptotic convergence properties of (xg) as
€ -0, en -~ ®» have been well analyzed in the literature. Here, we use large
deviations methods to get a more thorough understanding of the global
behavior. Let © be a stable point of the algorithm in the sense that X: -
@ in distribution as ¢ - 0, ne - ® For the unconstrained case, rate of
convergence results involve showing asymptotic normality of {()gf - @)/ve),
and use linearizations about @ In the constrained case @ is often on 0G,
and such methods are inapplicable. But the large deviations method yields an
alternative which is often more useful in the applications. The action
functionals are derived and their properties (lower semicontinuity, etc.) are
obtained. The statistics (mean value, etc.) of the escape times from a
neighborhood of © are obtained, and the global behavior on the infinite

interval is described.
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Let q;(-), i € k, be continuously differentiable and let G = (x: q;(x)
€ 0,1 ¢ k} be a compact convex set which is the closure of its imterior. Let
{¢a) be a bounded sequence of random variables and b(.,-) a bounded
function with b(-,t) uniformly (in §) Lipschitz continuous. Define [i5(x)
to be,)? (nearest point) projection of x onto G.
ey Y Ao 07 Arscribes s L/ ok

The projected recursive (or stochastic approximation) algorithm H-

arises frequently in applicationsin control and communications theory.

/

- e e——— o

Jpmm—— L e e — -
(L)) Xfey = nG(Xg + eb(xl‘,’gn)), x ¢ R, X§ = x, given
!_

>There is a sizeable literature (e.g., []] to [5]) concerning its asymptotic

properties as. € = o with ¢n -t or ¢n - ® Often ¢ is replaced dby a
*stochastic app}oximation' sequence {a;) with a;, < o, a3, > o, and [a, = =
The mcthods{/of analysis are similiar in both cases, except that the latter case
(agp = o) ,t'l/lows the possibility of w.p.] convergence of (Xp).

'l/'ysical results are the following. For a velocity vector v, define the
projéé'tion of v at xeG by [gkxv) = liAm [Ng(x + av) - x)/a and write

b (x) = Eb(x,t) (b(-) to be redefined below). The equation

(1.2) x = 0l G(x.b(x))

represents the projected dynamics on G for the ODE x= -I;(x). Let xf(.)
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denote the piecewise linear interpolation of (Xg) with interpolation interval
¢. Under reasonable conditions, X: converges in distribution to the set of
stationary points of (1.2), as € - 0 and en - e ; also x¢(-) - x(.), a
process which satisfies (1.2). If T(x) is a gradient of the function —B(x),
then the limit points are the Kuhn-Tucker points for the problem of
minimizing B (.) on G. Rate of convergence results for (1.1) are unavail-
able. For the unconstrained case the °rate’ results are of the following form.
Let Xf - @ in distribution as ¢ = 0, en = ®» Define US = (X§ - @)/ve,
and let U€(.) denote the continuous parameter interpolation (interval ).
Then, under the appropriate conditions, U‘(t‘+-) converges weakly to a

stationary Gauss-Markov process as € - 0 if t

e ~ @ fast enough [12] (with

a similar result for the stochastic approximation case). The result is based on
a local linearization about @, and the rate result does not fully exploit the
dynamics of the iteration. Such a linearization cannot, in any case, be done
for (1.1) when the limit © is on the boundary &G. Some results for this
case are in [5]), where (X:) is Markov, and (under appropriate conditions)

- (X€ - @)/¢ is shown to converge in distribution as ¢ - 0, where X¢ s

Y b

distributed according to a (unique) invariant measure for (1.1).

Here, we use the theory of large deviations to get a better picture of the
asymptotic properties for (1.1). Let D denote a neighborhood of © (all

neighborhoods are with respect to G), with © a stable point of (1.2) and

] with D in the domain of attraction of @ Let t§ = min (t: x(t) ¢ D),
define C,[0,T] to be the set of G-valued continuous functions on [0,T] witk
initial condition x, and let P, denote the probability measure given that

Xg = X. We always use d(.,-) to denote the (sup norm) distance between
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functions in CJ[0,T], as well as the sup norm distance between points in a
Euclidean space . As special cases of our large deviations results, we obtain

estimates for quantities such as.
(1.3) lim ¢ log P,‘(-rg ¢ T)
€
(1.4) li‘m ¢ log Px{x‘( ‘) € A) , A< CJ0,T],

lim € log E 7§ .
€

The limits in (1.3, 1.4) are important in studying the asymptotic
properties of {xg) and are often of greater interest than 'local’ results of the
type of limits of suitably normalized ()g‘, - o). 'We can obtain the
(asymptotic) locations of the exit from D and the most likely escape routes,
all of which are important in applications. A comparison of (1.3) for
different algorithms yields information on their relative stability. They
exploit more of the structure of the algorithm than the ’local’ limits do, and
often provide realistic information, e.g., estimates of the time spent in a
neighborhood of a stable point, etc.

The paper is organized as follows. In Section 2, various terms from the
theory of large deviations are introduced, and the problem (on a time interval
[0,T]) formulated. Sections 3 and 4 contain some technical results concerning
the action functional and approximations of (1.1). These are put together in

Section 5 to get the general large deviations result.  Section 6 concerns the

mean escape time of (1.1) from a neighborhood of a stable point of (1.2) and
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in Section 7 we remark on some extensions to the global behavior of (1.1) on

the infinite time interval [0,®], the character of movement from stable point

to stable point and on the stochastic approximation case.
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Problem F lati ; { Definition

Let T/A be an integer and define L = (ji iA/e € j < (ia+A)/e)

Suppose that the limit (defining b(.)) in (2.1) exists uniformly for x € G:

@1 oy N1 _
lim 5 LE bx) = B0

Suppose that there is a function H(.,.) such that for each A > 0, the limit

in (2.2) exists uniformly for (x,&) in any compact set.

T/a-1 A T/a-1 iN¢N-1
I 8 H(ax) = lim = log Eexp [ o« [ blxut)

H(-,-) is obviously continuous, and we suppose that H(.,x) is continuously
differentiable. The limits exist and we have the differentiability in a« if
(¢, is a finite state ergodic Markov chain (see [7), where the argument is
based on one in [6]) or if & = [ g, 8and (g} is iid, bounded,
Eklgkl <® and g = 0 for kk< 0 [8]. Define the usual Legendre

transform L and action functional § by

L(B,x) = sgpw'c - H(ax)]

S(Te) = r L(&(s), o(s))ds for ¢(-) absolutely continuous e C,[0,T])
0

= » otherwise
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L(-,.) is lower semicontinuous (ls.c.), L(-,x) is convex, and S(T,.) is ls.c.
[6) The sets U(x) = (B L(Bx) < ® and Uyx) = U(x) - b(x) are convex
and are uniformly bounded since ©b(x,t) is uniformly bounded [7). Assume
that U(.) is continuous in the Hausdorff topology.
Define B(x,) = (v: Mg(x,v) = fig(x,B)) . the set of ’velocities’ having the
same projection at x as B  has. B(-,-) is upper semicontinuous (us.c.)

in the Hausdorff topology. Define

(2.3) Lg(B.x) = inf L(v,x) .
veB(x,)

By the lsc. of L(.,.) and usc. of B(.,-), Lg(-,.) is lsc. For of-)
absolutely continuous, set
T

(2.4) S(T.e) = | Lg(els)els)ds
0

and define S4(T,e) = @ otherwise.
Under some other conditions to be introduced below, the main result of
the next three sections is that Si(T,¢) is an action functional for x€(.) in

that Sg(T,.) is lsc, and for Ac C,[0,T] (with interior A® and closure TA),

(2.5) —inf  Sg(T,0) ¢ L P (x(-) € A)
OGAO €

< n‘_m € log P (x(-) ¢ A} € —inf S4(T,0)
ocA

.......
.....
......
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Owing to the presence of the boundary, the analysis is somewhat
non-standard. The typical results of interest require that the boundary be
taken into account. See, e¢.g, Fig. 1. where D is a set in the domain of

attraction of @, a stable point of (1.2), and the arrows indicate the flow lines

for (1.2). With the indicated 'typical’ U(x), the most likely escape paths from
{ D are along the boundary [a,b).
h To relate (2.5) to (1.3), let A = {&(-): &0) = x, o(t) ¢ D for some

t ¢ T).

Write the vectors x,b,B.etc. as (x),%,5), (bl,bz), (B‘,Bz), etc., where x,,b,,

have dimension r, and x,b, have dimension r, for some n.fy L,
(resp., L,,) below is 1, x r, (resp, I, X 1) For the purposes of
simplifying the analysis from Section 4 on, we make an additional assumption.

Define I(-) and In(-) by
1 N _
(2.6) Iim ; cov [ [b(x,gj) - b(x)] = lim In(x) = E(x)
1

[ X)L (x)
1 12

E (x) L (x)
21 22

We use either of the two cases. Case 1 (non-degenerate), where [L(x) is
positive definite on G. Cas¢ 2 (degenerate), where [, (X) = [,(x) = [,q(x) =
0, and [, (x) is positive definite on G. These cover the typical cases in

applications. In Case 2, L(8,x) = @ unless B - S‘(x). Define U,(x) = (B,

“ TNt
..........
-

et ~,




L('t;l(x),pz,x) < ®»} and define the §-interior sets Us(x) = (B ¢ U(x): d(pg,8U(x))
> 8), US(x) = (B, € U,(x) d(B,,2U,(x)) » &)

Non-degenerate case, H(.,x) is strictly convex in a neighborhood of
«=0, uni.formly in x in G, and for any 8 > 0 L(.,-) is uniformly
continuous for (B,x) ¢ (US(x), x € G). Also L(#x)=0 iff P = b(x), and
there is a neighborhood N of the origin such that N + b(x) = U(x) for sall
x e G[7], and L(&x) + .,x) is strictly convex on N, uniformly in x in
G.

Degenerate Case. Here the definition (2.2) reduces to

/»’ Vi

i

H(ax) = of bxy + H,(a,.%),
where H,(.,.) is defined by (write q = (a;;.,%;))

N/a-1 A T/a-1
(2.7) I A H,(cﬁ,xi) = lim — log E exp [a [ b,(xi,gj)
i=0 N N i=0 jel

Let L,(B,,x) be the dual of H,(a,,x). Then H,(.,-) and L,(-,-) have
the properties ascribed above to H(.,-) and L(.,.); also L(gx) = L,(By.x)

if B = b(x) and L(Bx) = ® otherwise. The following result will be

useful.




-------------------
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Lemma 1. Let P ¢ US(x) and % = v Then LGPx) = L(vx).
For 6> 0,

(2.8) L(b(x) + (1-8)v.x) ¢ L(b(x) + v,x) x ¢ G, all v.

The first assertion is in Freidlin [6. The second is a consequence of the

convexity of L(-,x) and the fact that L(&x),x) = 0, L(b(x) + wx) 3 0.
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L. Dj \ imations: Prelimi E lati

Owing to the boundary G, it is hard to get the large deviations results
for (1.1) directly. We do it in a sequence of approximations, which get ‘closer’
to (1.1), and for each of which we can get a large deviations result from the
preceeding one. We define the approximations in this section. W-) and
&(-) denote arbitrary functions in G[O0,T). For A > 0 (wlog. we let
T/A and A/e be integers, witﬁ NA = T) define ¢Fj to equal (na) for

i € |, and definc the sequence (YS'¥4, i ¢ N} by Y§'¥%4a=x and

€A

@a3.1) YH-I - Yi‘w" + el b(q’,"tj)

j=I‘

Let A(.) denote the piecewise constant (on intervals [nA,nA + A)) inter-
polation of (y{ia)). We use ¢* to represent the samples (¢{ia), © < i € N).
We first state a large deviations result for (3.1), then use the ’contraction’
principle to get such a result for a projected form of (3.1), and then take
appropriate limits as A - 0. In {6), Freidlin developed the large deviations
theory for (3.1). The details in [6] were for a continuous parameter case, but
the results and methods would be identical for the discrete parameter case

(3.1). In particular, the following results hold. Define SW4 by

N-1 )
(32) ShATe) =T AL (“‘“‘: €8 ).
0

P ——p— i Sae anse i St Bty 2o S S I dr
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. Then SW4(T,e) is an action functional for (Yi"""‘, i € N} in the sense
; that for any Borel set B in (RPN
: (3.3) —inf SHATe) clim ¢ log P, {{Y,"** .0 <i ¢ M ¢ B)
. - (X Y
¢ lim log P Y , 0 <i €N B
5 15 € log x{( i < i } € }

¢ — inf_ S¥A(T,e) .
¢*c¢ B

For «&(.) € C, [0,T}), define
: (3.9) st4T.e) = inf ST,
: £

where the inf js over the set
{f: Ng(etia) + fla+a) - f(ia)) = olia+a), i € N-2).

For later use, it is more convenient to rewrite (3.4) in the form

N1 fu - fu
(3.5) STy = T aiaf L (2 ),
0

2. n
ettt

- e W . A A X X 4 Ly ", " A B S T e P L e RGP JY T I . S R B )
CORREAL ST SN -.-“ \\-: S falat AT N T ‘-—\..,“ AT AT N A T T
N B “ - - o . o » - .
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where the inf is over the same set as for (3.4). By the ’contraction principle’
f

([91.p5), %‘(T.@) is the action functional for the ‘’projected’ sequence

(XEW4, i ¢ N) defined by X§¥4 = x and

"%‘

€A
i1 = Og (X +

(3.6) X € L[ bt .

jeli

In the next section we prove (Theorem 1) that S%‘(T,o) E S&(T,o) is an
action functional for the mext approximation (Xf+4, i ¢ N} defined by X&4
= x and

3.7) X =g XM e 1wt ) .

jel;

Let x%A4(.) denote the piecewise constant interpolation of  ({Xf4)
(interpolation interval A). For a set A <CJ0,T] it will sometimes be
convenient to usc the ‘sampled’ notation x€4(.) ¢ A4 to mean that XH4 =
oia) for i ¢ N for some o) ¢ A.

In Theorem 2, the ls.c. of SG(T,Q) is proved, as is the relation

(3.8) —inf S4(T,¢) € lim lim ¢ log Px(x"‘(~) € AY)
oA rulry

¢ lim lim ¢ log P, (x®4(.) ¢ A%)
A €

o€A
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' In Theorem 3 we show that x€(.) and x®4(.) are ’close’ in the
\ following sense. Let d(x€(.),e(.)) ¢ 6. Then there is a 6,(6, ~0as 5 - 0)
“\ such that d(x€4(.),e(-)) ¢ ,, and conversely. This result and (3.8) will enable
: us to get the desired large deviations result in Theorem 4.

3
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IV. Propertics of S&(T.o0).

Write” X®4 = (X84 0 <i ¢ N), X&Wa o (XEW4 0<j¢N) ¢b=
(Wia), 0 <i ¢ N).

Theorem 1. For ecach A > 0, S§T,e) is_an action functional for
X€4; Le. for anv Borel set B in (R*)N,

- inf S&T.e) ¢ lim ¢ log Py (X4 ¢ B ) ¢ lime log P, (X% ¢ B)
o* B’ < ¢

(4.1)
¢ ~ inf SA(T.e) .
o*cB

Proof, Given 8> 0, there is a 8, >0 (where 6 -0 as & - 0) such

that

dXEWA 48) <5, = d(XT4,44) <5 .

To see this, write (ia) ~ X4 + o, where |q] ¢ 8, and

(4.22) x“:" =g 0% e ¢ poexiM. at))
iel;
€,4 €A €, A
(4.2b) X7 Mg (X, 4 e jfl BOX; W) -
i
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The existence of a suitable 6, follows from this and the relation

lnG (x) - nG(x')| ¢ |x-x 'l (due to convexity of G)

and the uniform Lipschitz condition on b(-,¢).

Similarly there is a 6, > 0 (where 6, -0 as 6 < 0) such that

d(X€%, 4%) < &8 = d(XEWas) < s

2 .
Thus
(4.3) P aXe44%) < 8} » P {d(xe¥a ¢2) < 5.},
. (4.9) P {ax€ ¥4 44) < 5,} > P {dX44% < 8} .

The result follows from (4.3) - (44) in the standard way [6]. In
particular, given B (with non-empty B% and h > 0, there are ¢(.) with

v* ¢ B° and small §,8, such that

P (X% ¢ B) » P (X%4 ¢ B%) »
P(d(X%444) < 8} >
P(d(XE&a¥ys) < 5, ) >

exp - élS‘&YT.v) + h]

.....................................
.....................................
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for small ¢. The left side of (4.1) follows from an appropriate choice of ¢
(a ‘'tail’ element of the infimizing sequence). The right hand inequality of

(4.1) follows from a similar approximation arguement. Q.E.D. -

TIhcorem 2, Sq(T,-) is lsc. Eor each A ¢ C0,T)

(4.5) lim inf SJT.e) » inf Sg(T.e).
Ta oeA oA

Eor cach &(-) for which Sg(T.e) < = there are piccewise constant (on

intervals of length A) functions e,(-), w,(-) converging upiformiv to @)
such that
(46) Tim S(Tiey) € S (Te) .

The incqualitics (3.8) hold.

Proof. Part 1. The proofs for the degenerate and non-degencrate cases are
essentially the same and we do the latter case only (for the degenerate case,

use US in lieu of U® below).
Proof of the lsc. of Sg(T,.). Let () = &) The infimizing v is

attained in inf .L(v,8"(s)). Let V%(.) be a measurable selection
v ¢ B(e"(s),0"(5))
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*(11, Thmd4.1] of the minimizer and write it as V*(s) = v"(s) + b(e"(s)). Using the

uniform continuity of L(.,.) on {(px:P e Us(x). x ¢ G) for 8> 0 we have

lim lim |T n n n
7 Se(They) = — JOL (Ble"s) + vi(s), &"(m))ds
tim lim [T
Ch)) » — — | L[be"e) + (1-8)vPs)e°(s))ds
5 n 0
lim im Ty (Blets) + (1-8)v2s)eis) s
5 0 ’

lim lim | lim [T a
= —s —A-[—nl LF(.(S)) + (1-8)v (S)..‘(S)]ds ‘ﬂ: }

5 A n
ia

lim lim [lim N-1 g iata _
3 — — [—-— LA L[Z f [ ble(s)) + (1-8) vi(s) ]dsp(i‘)]— ap ,
0 A
where of - 0 as A - 0 for each & > 0. The first inequality uses
Lemma 1, and the last inequality follows from Jensens’ inequality and the

convexity of L(.,x).

. The selection theorem 4.1 in [11] uses a bounded us.c. function and a
maximization. But a slight modification works for our case, since the
lsc. L(.,-) 1is bounded from below.
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Choose a subsequence such that R vi(s)ds converges, with limit denoted
by (absolutely continuous since thq U(x) are bounded) V(.) , and write
V(t) = I{, v(s)ds. By the ls.c. .of L(-,-) and Fatou's lemma, we can continue

the string of inequalities in (4.7) as
4.7 , Jim r L(b(e(s)) + (1-8)v(s).e(s))ds
8 Jo
> rL(B(o(s)) + v(s),0(s))ds
0

If Mg(els).b(e(s)) + v(s)) = &(s) for almost all s ¢ T we are done, since in

that case (for almost all s) T)(o(s) + V(8)) € B(o(s).&(s)) and

L(b(e(s)) + v(s),e(s))

(4.8) 3 inf L(v,e(5)) = Lg(els), &(s)) .
v ¢ B(e(s),0 (5))

Thus, we need only show the projection property below (4.7') for b(e(s)) +
v(s) = ¥(s).

If for some s < T, &) ¢ G° the interior of G, then ¥(t) = ¢"(t) for
almost all t and large n, on some open interval containing s. This
implies that ¥(s) = ¢(s) for almost all s such that ¢{s) ¢ G°. Now, let
o(s) ¢ 8G on some interval. In particular let I = [a,b), a < b, be such that
(rearrange the indices is necessary) for some 6 > 0, and integer 2 and all

sel qos)) =0,i ¢, qefs)) € =8 < 0, i > 2. Define the set G(o) = (y:
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A

2

qy) ¢ 0, i € 1). Let C(x) denote the cone generated by the outer normals

to {y:q(y) € 0}, i ¢ #, at the point x. Then C(&(s)) = Clefs) for s e L

A

Define the °projection error’ :P(s) by
V) - VAS) = Mge)0°" (V) = &™)

Then '(P(s) e C(o"(s), if o&'s) ¢ 8G(e). Otherwise 3"(5) = 0. Extracting a
convergent subsequence if necessary, there is an absolutely continuous function

V(.) such that

- rc"(s)ds - \"\(t) = r v(s)ds, t € b .
‘ a

::j Note that ¢(.) moves orthogonally to C(e(s)) at s (recall that the
N active constraints for ¢(s) do not change for s ¢ I). Since ¢'(.) ~ &)

and ¢(s) € 8G(¢) on I,

o(a) + ]"(V“(s) - 3%(s)lds ~ efa) + E (%(s) - Y(s)ids = &t), t € b.
a

-.'.'~ Thus ¥(s) - ?r(s) = ¢s) for aa. s e I. By construction, '\\(s) 1 V(s) - C(s)
and ?/(s) € C(o(s)) for almost all s ¢ 1. Thus [(es), V(s)) = Mg(es), V(s) -

Vs) + V(s) = Ng(ets), ¥(s) - v(s)) = Ng(es), o). aa. s ¢ 1. By this

AN

method, we can show that &(s) - nqko(s),v(s)) for aa. s ¢ [0,T] and the

‘projection’ requirement below (4.7') holds. Thus Sg(T,.) is Ls.c.

.
-,
"
o
o)




.....

Part 2. We can write

S(T.e) = j: inf L(u, e4))ds
u

where on the interval [iA,iA + A), igf is the inf over all u such that

Ng(elia) + au) - &lia) o(ia + a) - olia)

A .

By using this and an argument very similar to that used to get the lsc.

property in Part 1, we can show that

.
(49) =2 55(T.e) 3 Se(Tee).

Also, if @,(-) = o(-) (e,(-) being piecewise constant), a similar argument

yields

l.
(4.10) —1:“— Sg(T.e,) > Sg(T.0).

We now prove (4.5). Let inf Sy(T.0) < ® and let ®,(-) attain the
®cA
inf. Let (piecewise constant) ®,(-) vyield the inf in inf_ S§(T,e). Since
ocAlL
{(e,(ia + &) - o,(ia))/a, ia ¢ T} is bounded, we can extract a convergent

subsequence of the piecewise constant functions (o,(-)}) with an absolutely

continuous limit ¢(-). Then by (4.10)

.........

.......................................
...........
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Iim
— Sa(Te) > 54(T.0) > Se(Tiey)

which implies that (4.5) holds, together with the right side of (3.8). If

inf S;5(T,0) = =, then the above argument yields that U‘-m S&(T,o‘) = o also.
€A

Inequality (4.6) yields the left side (3.8), by use of the following
observations. (See Part | for a related argument) If A% is not empty, then
there is a ’nearly infimizing’ o(-) ¢ A° and a & > 0 such that for small

€4,
P ((x6:4(.) € A%} » P (x®4(.) ¢ (A%)%)

(4.11a)
> P (d(x®4(.)e(-) < 8} .

Given h > 0 thereisa 6 > 0 and ¢ > 0 such that for ¢ ¢ €, and
small A and $,(-)@,(-) close enmough to @), we can continue the

inequalities as (using (4.6))

Fabi), 8,00 « 8y

> P(d(x*
Fos
(4.11b) > exp - 3 [5c4(T.8,) + 1]

>exp -4 [SG(T.o) + Zh].

Thus, to get the Lh.s. of (3.8) only (4.6) needs to be proved.

To do this, we adapt an argument of Freidlin [6).
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Part 3. Proof of (46) We can write
- 0 v ¢ B(ol)els)
The inf is realized; let W.) be a measurable selection of the minimizer
and define V(t) = x + ﬂ, V(s)ds. We have
.:‘ N-1 ata
(4.12) Ss(T.¢) 3 L sup r ['v(s) - H(xe(s))]ds.
o i=0 a “‘ia
The sups in (4.12) are attained at some (q, 0 € i ¢ N}. There are § e
N [ia,ia + a) such that
7
’ 1 iata
: L ] H(a,o(s))ds = H(a,es,).
Y A Jia
Define y,(-) to be the function with value &(§) on [iAiA + A). As
E;f A~ 0,¢,(-) = &-) uniformly on [0,T). Thus
~ N-1 - -
: Sg(T,e) » L Afa'[V(iata) - V(ia)] - H(euw,(ia))
: 0
‘ A

LK Y
P N ]

*

N-1 -
. (4.13) =F A Lf\’ (ia+a) - V(ia), \l"(h)].
N 0
” A

o™
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Define o‘(-) to be the piecewise linear function with samples o‘(o) = x and

o, (ia+s) = Ng(e,(ia) + V (iata) - V (ia)). Then by (4.13)

N-1
Sg(Te) » L A inf L(v, ¢ (ia))
i=0 Vv : Ng(e,lia) + av)= @, (iat+a)

L XY
Sg4

(4.11) - (T.e,) -

A proof similar to that of Theorem 3 below yields that ¢,(.) = o)

uniformly on [0,T]. Thus (4.6) is proved. Q.E.D.
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V. Large Deviations Results for x€(.).

In order to extend Theorem 1 (for the x%8(.) process) to the x€(-)
process, we need to show that the processes are close for small ¢A Let A=

ke , k being a large integer. Recall the definitions

s XN = noht e L vl 1, = Gk ¢j < ik+ K, i ¢ T/a
jel,

(5.2) X 0y = Ng(X; + eb(Xyt)) . j € T/e = kT/a .

To extend the large deviations results to x€(-) it is sufficient (Theorem

4 below) to show that for each 1 < ®, ¢(.) and & > O, there are 6, > 0

which tend to zero as 6 - 0 such that for small enough A

(5.3) d(x€4(.)e(-)) < 8, =d(xf(-)e(-) < &
= d(x€4-)e(-)) < 86,

Let b = b(o(js).g;) and define the processes ()_(:,n € T/e), ()-(;',

i € T/a)

o€ > €,A

i:+l = (X, + ) Xp = X, = x,

.......




€, —€,A
Xorx = NgXi" + € L o)
jel;

and their continous parameter interpolations X€(.) (interval ¢) and TX€4(.)
(interval A).

By the convexity of G and the Lipschitz condition on b(.,}), given
6 < 0 (resp., 6' < 0) there are § (resp, g') going to zero as & (resp.,

') goes to zero and such that
d(X€4(.),0) < 8, = d(x®4(.),0) < 8 » d(X®4(-)0) < §,

d(X€(-),0) < 8] =»d(x%(-),0) < &' =» d(X%(-),0) < 8]

Thus, to show (5.3), we need only show that d(X€4(.), X€(.)) ~ 0 as A - 0,
Ale -~ » We will actually bound |x;‘- )?ikl' eik ¢ T.

For notational convenience, let |pj"l and absorb any other bound into
the e

The basic idea is to show that if the two processes ever separate by
AY2, then the maximum rate of growth of the separation is then slow enough

for them to stay close. The following lemma will be used the proof.

Lemma 2. Let x,x, bein G, with ve=x;-x, Eix y>0 Lot vy, ¢
N(x) NG, y; € Ny(x,) ,and W=y, -y, Then
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(5.4) Ay - Yp — > € VIWi/,y,
(A A

Proof. (See Fig. 2) If y3 € G, there is nothing to prove. Let vy, ¢ G.
Consider the hyperplane defined by the normal Me(yy) - y4 and point vy,
Since G is convex, x, lies on the same side of this hyperplane as does

Ng(yy). Thus
<nG(y2) - yz, x’ - yz> ) 0 or

<Ng(Y3) = Yo (X3 - X)) + (X; - yg)> 3 0 which implies

v L]
<Mg(yy) - Ya m > ¢ l—\;T <fig(yy) - Yo X;- Vg>

Since ilg(yy) - yat € 1wi and X, - ygi € ¥, the lemma follows. QE.D.
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Theorem 3. ﬁx_nl.iTnsup|)-(;-“X§‘|-0.

A ¢ ik€T/a

Proof. We use Lemma 2, where we identify )_(; with x, and ;(;" with
X, Let n ¢ [ik,ik + k) and set y, = )—(‘n, Yy = i: + ¢p,. Thus Ng(yy) =
nc()-g‘ + epy). Since |p| €] and [ (.) is a contraction and k = A/e,
we can use the value A for . Define d, = |i‘“ - i‘.;‘| Then the

lemma yields

—€ Se € €.
<X, + ep) - X, + €p), X~ Xy >€ ed/dy

d,
or, equivalently,
<).(:+1 - i: - €p, s )_(; - )-(,:" > ¢ eA/d, .
d
Summing from ik to ik + k - 1 yields
ik+k-1
—¢ —€ —€¢ —€¢,A
ik
d,

: A T | R
We next get an estimate for 2,“ - X,y - Use Lemma 2 again with x,

—€,A -€ —€,4 ~€,A ik+k-1 =€,
-x&,x,-xu,y,-xa,y,-xu-retpn.Then nG(y,)-xin
ik

and (using y = A)

ik+k-1
=€,a el 7Y ~€,A =&
(5.6) <Xy -Xa € L[ ooy Xy X, >c¢a¥d,
n=ik

dy
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Subtracting (5.6) from (5.5) and defining Yy~ = Xy - Xy  viclds

5.7) <Yys, - Yot YRt sd,>c2at/d,

Suppose that d, > AY? | Then (5.7) implies that the component of
Yy, in the direction Y, has magnitude less than or equal to 24%/d, +
d, ¢ 2a%% + d, . The bound |a| € ! implies that the projection of
;"i;:k onto the hyperplane normal to ?ﬂ:‘ has magnitude ¢ 2A. (In fact

—€ ’ .
[Viers - Yo | € 2A) Thus, if d, » a¥?,

2 3/3 2 3
A, <@ +a) + 4.

Let k, denote the maximum distance across G. Then (for 4, > AY? and

28%/2 ¢ 1)

2 8/2 3 2
da ‘(2*“‘1)‘/ + 44 +d,

or, in general

2 1/2 T 8/
d, ¢ max [A .(6+4k1)z-A ’]
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It follows from Theorems 2 and 3 that

Theorem 4.  Sg(T.#) is an actiop functional for (x€(-)) and (2.5) holds.

Proof. Fix the set A, and let ¢ ¢ A®. Using (53) select 6> 0, 8, > 0

such that Ng(e) © A® and for small A
{axs 000 < 8,) © {(dxé-het-) < 8).
It then follows that
n?- ¢ log P,‘{x‘(-) € A}

> h‘m- ¢ log P‘{d(x‘(.),o(.)) < s}

> im. lim ¢ log P {d(x44C)e0-) < 8, }

> - Sg(T.e)
where the last inequality is due to (3.8). This gives the left hand side of
(2.5).

Since the estimates in Theorem 3 are independent of the particular ¢

chosen we have

P.{x%() ¢ A} ¢ P {x4(.) ¢ Ng(A)}




for any 6> 0 and small enough ¢,A Hence by (3.8)

liT ¢ log P‘(x‘(-) ¢ A]

¢-Um jnr s (T
® ecNg(A)

Since by ls.c.

lim inf S¢(T.e)
6 “NS(A)

> inf_ SQ(ToO) ’
ocA

the right hand side of (2.5) is proved. Q.E.D.
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- V1. Mean Escape Time.
ZE Let © be an asymptotically stable point of (6.1), and D a neighborhood
A (relative to G) of © with D in the domain of attraction of @
N (6.1) X = fg(x.bx)
- Let -r,‘, denote the escape time of x€(.) from D. Then, under some
additional assumptions, we will prove the analog of the classical case [6], [10],
. namely
-
o 6.2 lim ¢ log E,%f =5p0), x ¢ D,
. where

Sp(@) = inf (Sy(T.e): &0) = 6,&(T) ¢ D)

All neighborhoods are relative to G.

In order to avoid excess detail, we work with the non-degenerate case,

I RN
PR

4

(sce below (2.6)) but the results hold for the non-degenerate case as well, if we

»

- assume the existence of the &(.) discussed below (6.3).

Since

Lg(px) = inf L(g(x) + 1u,x)

Ut fglxb(x) + u) = B

WIRTRILIREE) R A

and L(ax) = 0 if and only if «= B(x), we have

LR
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(6.3) Lg(B.x) = 0 iff B = Ng(x,b(x))

Loosely speaking, we ’pay’ only when noise or ‘control’ wu is required to
force a deviation from the (free) path of (6.1).

For each small p > 0 and Np (6) there isa p, (p, = 0 as oy - 0)
and a T, such that all paths of (6.1) starting in D reach Np,(®) by time
T, and do not lcave Npy©) after first hitting 8Np,(0). By the

non-degeneracy assumption L(b(x) + u,x) is strictly convex in u and equals

o(u) uniformly in x ¢ G. This implies the following. For each p > 0
there ar¢ T < ® and p, > 0 (p‘ -0 as p = 0) such that for each x ¢
Np,(e) there is a path ¢9(.) such that &10) = x, ¢*(t*) = © for some * ¢

T and Sg(t%, o) € ».

L e 4 vﬁ Y
DA N T A

It is sometimes convenient to define & for t > t* without increasing
the cost. To do this, we let &(-) satisfy (6.1) beyond ¢ For suitable g,
(going to zero as p and p, < 0), we can suppose that &(-) never leaves
sz(e).

Define (if the set is empty, define the inf to be =)

Sp(x) = inf (So(Te) : &0) = x, &T) ¢ D, T < ®).

Given 6> 0, there is a T® < o and for each x ¢ D a path &)

on the interval [0,T%] such that J0) = x, $t*) ¢ 8D at some ¢ ¢ TS,
&%(-) satisfies (6.1) after ¢ and SG(TS."") € Sp(x) + 8. This fact, which
will be used frequently in the sequel, follows from the following two

observations:

- . . PN PR o, .. . - B . . PR P A P B R PURICEE SR Y “T e . .
................ A IR PTIIRIL SLIRNL A LT . P S JACH P
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(1) For each p > 0 and any set of paths in G with uniformly
bounded costs, there is a Tp < ® such that the paths must spend all
but at most Tp units of time in Np(e);

(2) There is a T:, < @ and paths 4{(-) on the interval [O,T;] taking
X € Np(e) and then to © and then to 8D at some time ¢ T;, with
cost € Sp(e) + P, Where p, =0 as p = 0.

We will next show that Sp(x) - Spe) as x - @ By the comments in
the previous paragraphs, Sp(x) ¢ Sp@) for x e D, since x can be
connected to © by a path with arbitrarily small cost. If lim Sp(y) = =,
then we are done. Thus, we need only work with sequences y-’: - © such
that spp Sp(x,) < e Let x - © and fix & > 0. There are q';’(-) and
bounded T¢ (by, say T) such that ¢P(0) = x,, 6B(TS) ¢ 8D and S4(TSef)
¢ Sp(x) + 6 For T3 t>TS let ¢f(.) satisfy (6.1). Choose (and index
by n) a convergent subsequence of (Tg, 02(«)} with limit (T,e°(-)). Then

05(0) = © and os('l') e 8D. By the ls.c. of SG(’T',-),

6 + lim Sp(x,) » lim So(T.eD) » Sg(T.e) = Sg(T.0) » Sp(e)
n n

Thus, since 6 is arbitrary

(6.3) lim Sp(x) = S(e).
X-9
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Assumptions. We carry over the assumptions from Sections 1 and 2. For
the escape time problem one must redefine the _B(x) and H(ax) of (2.1)

and (2.2). Let B_ be the minimal o-algebra mecasuring (¢, i € m) and if

.M is a stopping time for (¢ ), let B, denote the associated o-algebra. If
)

¢ is a stopping time for the continuous parameter Pprocess x€(.), we use
B.(v) instead of B, . Suppose that the limits in (6.4) and (6.5) exist

uniformly in the stopping time M, in @ , and in (x,a) in any compact set,

and that H(.,x) is differentiable. Those propertics hold for the processes
listed below (2.2).
_ N n+M-1

4 = lim — .

(6.4) b(x) htxln - EBM ::‘ b(x,tj)
: n+M-1
= i -— ' .

(6.5) H(ax) hgl nlog EBM exXp « f‘b(x,tl) .

For + a stopping time for x€(.), let P g (1) denote the conditional

¢
probability measure of the process x€(-) which is reset to x at time -,
then evolves as before (using “‘rleﬂ’j » 0) after time ), conditioned on

the data B(v) up to Define Sg(T,A) = inf Sg(T.e). Then for each T
¢cA

< e and A = C0,T]), we have

. lim
- (6.6a) - Sg(T,A9 ¢ — ¢ log Px's‘(ﬂ(x‘('rf ) € A)
&
b -
L < ix_m. ¢ log Px.B‘(T)(x‘("' + .) e AY € - SG(T.T\)
€
"
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The ’'rate’ at which the inequalities hold is uniform in + and o in the sense

that (e.g), for each h > 0 therc is e, > 0 such that for all vw and e €¢,

(66b)exp - [SG(T.AY + /e € Pyp (1) (x (r+:) € A} € exp - [SG(T.A) - h/e.

The ’uniformity’ in (6.6) follows from the uniformity of the convergence

in (6.4) and (6.5) in the same variables (wM). In fact, our derivat

with (3.2), (3.3), obtainable from [6]. It follows from the derivation in [6]

(although not mentioned explicitly there) that the probability in (3.3) can be

replaced by P"BM{(Yi‘N"‘, i € N) € B) with the ‘rate’ at

inequalities hold being wuniform in all variables {aM) in which the

convergence in (6.4), (6.5) is uniform. Here, Px’BM denotes the

ion started

which the

probability

measure (conditioned on B,,) of (X¢) (or (Yi‘"’"}) [eset to x at time

M, then evolving as before (using l,-...wj » 0, after M).

We will make one additional assumption. Let Ds denote a

s-neighborhood of D with D, = D. Then, clearly, st(e) decreases as

5 § 0. We assume that SDa(e) $ Sp(e) as & 4 0. If this condition doesn't

hold for D it will hold for an arbitrarily small perturbation of
lies in the interior of G and if the optimal exit path does not hit

this condition is implied by the non-degeneracy assumption.

Theorem 5. Under the assumotions in the above subsection, (6.2) holds,

D. If e

8G, then
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Proof. Part ]. We follow [10] as closely as possible and omit details when

‘

they are sufficiently close to those in [10). Assume Sp(e) < ® Otherwise, a
similar proof yields the result (in fact, x€(.) cannot then escape D with
full probability for small ¢). Let 0 < p <, < p,. Define g, =

N‘|1 (®), Tg = N, (o) - Nu ’(e). with all Nu"(e) contained in D. Define the

iy

stopping times (o¢,7;) by 7, = 0 and

o, =inf ( t> v : x%(1) e T,)

T, =inf { t> o, ,: x%t) ¢ g, U (G-D)),

and set Z = x%v, n r,‘,). For rotational simplicity, we omit the

e—dependence on ¢, T, Z,. We have (for x ¢ g, otherwise we add a term

0
n

E_v,, which is bounded uniformly in x and ¢, to (6.7))
[ ]

(6.7 E, "l‘) - E E, I(zn € go)Ezn.B‘(fn) (Ta4s = 7o)

The theorem will be proved via estimates of the terms in (6.7).

We have, for x ¢ g,

6. inf E - E -
(6.8) y elti'o.m,n yBlog) (Tatr = %) € Exp (7 )(Tap1 = )
< sup E (Tagr = 00) + SUD ©n - Ta)
Y € Fomn yB (g, N Tat1 [ Y go,u,nF"B‘(?“) n n
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It can be shown that there are k > 0 (depending on the ®) such that the
left side of (6.8) is bounded below by k, and the first term on the rhs. is
bounded above by k, (the latter fact follows from an argument similar to
that which uses Lemma 3 in Part 3 below).

Let d> 0. Let 3(-) denote a d/4-optimal path from © to aNus(e),
and write h = y, - u, For small g, there is 8 T < = (depending on
but not on x) such that for each «x ¢ Nll, (), there is a path Gs“(.) taking
x to e with (cost € d/4) then (using the first part of 3(-) here) © to
aN"s(e), at a total cost no greater than d/2. Then, there is an € > 0 such

that for ¢ ¢ € and all wn

(6.9) Pop,(r,) [(xE(ra+-), ¢%(-) < h/2) > exp - d/e .

The & can be chosen to be independent of x ¢ Nn, (@), although we omit

the details, (The argument is similar to that used below to get the uniform

bound on the terms in the sum in (6.16).)

Let p+ v, = o, denote the first escape time into [, after .

-

t-.’ Then (in this calculation, we let x‘('rn) € By, but for simplicity we omit the
[ ] . .

: associated notation)

f.

5 -

L (6.10) E,"B T o € TEL P, {p > mT).

. n m=1

By (6.9)

it oS S et ]




{p - mT €T)

Pop (r)lp > mT + T} = Ex.n‘(,rn{l-P!‘(Tn+mn' tr + mD 1o smry .

4 EK,B‘(‘l’n)[l - €Xp- dﬁ] I(p > mT)

€ [1 - exp- d/fe)™t?.

Thus E,'B‘ (x, » € T exp d/e¢ for small .

Putting these estimates together yields that (up to a multiplicative factor

- in [k,k, + Texp d/2] for arbitrarily small d), (6.7) equals

(6.11) LP(Z, ¢ 8y} ,
]

which we evaluate next.

Part 2. Fix d> 0. For small y, there are & > 0, t, <®and h > 0

such that for each «x ¢ 8o there is a function €(-) on [0.t,] connecting x
to @ then © to 8D, = 8N, (D) at some time ¢ ¢ t, with the following
properties: @(.) satisfies (6.1) after 5 Sq(t¢") = Sg(1,0") ¢ Sy(e) + d/4;
the distance from the set g Of the part of the path from first exit of I,
4 to first reaching 8D, is 3 By the distance from the set T, of the part of
the path which connects x to © is » 8y- A similar construction was used
in [10, p 124). The fact that the minimum cost for hitting oD, is close to

that for hitting 8D (for small h) follows from the last
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assumption stated above Theorem 5. Let & = min (85,h). Then there is an
€o > 0 such that for e € ¢, (we compare functions on the interval [0,4)

here) and x € g8,,
6.12) P"'Be(*a’ (Z,,, ¢D)>
Px,BG(Tn) (d(le(‘r,. + 4), ¢(-)) ¢ 8}

> exp - [Sp(e) +d/2] /e

As for (6.9), ¢ can be chosen independently of x ¢ g, We have

PAZ,y € 89 = Px(TI‘) > To4) = EJI-P

.x‘(‘rn).B‘('rn)(Z""" ¢ 30)"(& € g}

Using (6.12) to get an upper bound on the bracketed terms and iterating yields

(6.13) PAZ,.1 € B € [1 - exp - (Sp(@) + d/2) /e]™*?

which yields the upper bound . exp [Sp(6) + d/2) /¢ on the sum in (6.7)

when the (7., - 7,) terms are dropped from the sum).

Part 3, To complete the proof, we need the following Lemma, whose proof is

very similar to that of Lemma 1.9 of [10, Chapter 6] and is omitted.

...........
...........

.......................
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Lemma 3. Let K be 2 compact set in G which does not contain an
entire limit set for (6.1), and let + denote a stooping time for x€(-). Define
7§ = min(t: x%(r + t) ¢ K). Then there are ¢ > 0, T, < ®, ¢, > 0 such
that for ¢ ¢ ¢gand all yeK andall T

Prpen (k> T)
cexp-c(T-Ty /e

for all +w

Continuing with the proof of the Theorem, we have for any ¢ < ®

(6.14) PoB (7 )Zats ¢ 80} = Prp (r) (Zoyy ¢ D) ¢

s P Z D
, ‘“l?o'm yBlo) Zoya ¢ D)

€ su P o, d t,)
vy« f:.o vB(0,) (Tanr% > 1)

+ sup P’p‘(cn) (Tn*i‘cn < t’, Zn,H ¢ D}
y € l'o.D ’

By Lemma 3, for any ky < ® , there is a t; < ®» such that for small e
the first term after the inequality of (6.14) is ¢ exp - ky/¢. Fix d > 0. We

next show that
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(6.15) sup Pop (o) (Ta41 - 0 € 8.2, 4D} ¢
x € roou ¢n

exp - (Sp@)-d)/«

for small ¢ > O.

Let sup J&| € k,, The set Q of all piecewise linear interpolations
 }

of all paths x¥(-) on [0] (over all ¢, initial conditions x ¢ T, and an
arbitrary k,bounded sequence (§} wused in lieu of ({)) is equicontinous.
Let Q, denote the closure of the subset of functions in Q with initial
condition x, and which hit 8D at some ¢t ¢ t, For small 4 and
&) € Q. , S5(t;0) 3 Sp(6) - d/4. Given & > 0, therc are Ng < @ (not
depending oo x € Ty and (g (-), i ¢ Ng) in Q, forming a &/4-net

on Q. Note that if x - x and ;:(-) < &-), then o) ¢ Q. Now,

(6.16) S:I,P Px'g‘ (q,) (an.[ =0, €ty zn+l ¢ D}

N
6
‘i=1:l sup Pyp (o, HO(xE()(-)) € 8/2)

We now show that the r.hs. of (6.16) can be bounded independently of

X ¢ T, By (66) for cach x ¢ T, there is an %x) > O such that for

P € € ¢ (x)
?: 8:,’; P,.g‘(,n) (d(x€(-), &) € 8/2) < exp - (Sp(®) - d)/e .
;

If inf €(x) = O, then there are x ¢ fo. o) € =0, x, = x, (i) o’:"(-) -
R‘ro m

LY
[
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& -) such that on a set of positive probability for each m,

6.17) P, (o) (X0 €2() € 8/2) > exp - (Sp(®) - d)/ep-
m

Again, by (6.6), there is an “ > 0 such that for ¢ ¢ ¢ and large m and

all o

(6.18) exp - (Sp(@) - d/2)/¢ > Prp (g (AXEC1O() € 8)

4 P.da‘(,n)(d(X‘(-).q':(-)) < 8/2) .

This contradicts (6.17). Thus, we can bound the r.hs. of (6.16) above by
(6.19) Ng exp - (Sp(@) - d)/e

for all x,mn and small .

Define v = min(n : Z ¢ gy For small g,

Piv>n+1) =R(Z «g, all jecns+ 1)

- Ex Px‘(cn).ﬂ‘(c.)(zn'ﬂ € st)“(v > n)
(6.20)

» [inf Py (o)) Zasa €20} JP, (v > n)
y € Tpan

> (1- exp- [Sp(e) - 2d] /e)"L.




ey

R/

L

This, together with (6.7), (6.13) and the arbitrariness of d yields the theorem
since the E.n B, (7, )("n-u - 71,) values lie in the interval [k, ,k, + Texp

d,/€} for arbitrarily small d,, as shown above. Q.E.D.
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7. Remarks and Extensions.

7.1 Exit points of x€(.) from D. Let there be a finite number of points

Yyn ¥q € 8D such that

inf inf Sg(T,e) = inf inf Sg(T,0),
T>0 oeAi T>0 ¢cA

where A = {of-) ¢ Col0.T) : &T) = yh A = (&) ¢ Cgl0,T): &T) € 8D}
Then, as in [10), for each x ¢ D and 8> 0,

[
lim P {d(x¢(+§), Uy) < 8) = L.
-0 1

7.2. Global behavior of xf(.) on [0,]. Assume the non-degenerate case.
Let K,,., K, denote a collection of disjoint compact sets, each one of which
is a limit set for (1.2), and such that l?"l(i contains all the limit sets for
(1.2, If Ki NoG # ¢, let K = @, a single point. For a diffusion with
small noise, [10, chapter 7] obtains the (asymptotic) probabilities of transition
from a necighbohood of K; to one of Kj, and the (asymptotic) mean times
spent in a neighborhood of any subset of (K, i ¢ m), before exiting to a
neighborhood of another subset of the (K, i ¢ m)

Although our process is not Markov, similar results can be obtained here.
Let 8 denote a p,-neighborhood of K, and let ) denote the set N",(Kj)
- Ny (K). Define 7, =0, 0, =inf (t>7; x%)e yI} and 1 = inf(t>

Onr  X4(1) ¢ U'g) Set Z, = x%s,). Via the methods in the last section,
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one can get upper and lover estimates for P, g i )'('Zn,H € g) for

TN

t; X € 8;. These would then be used to obtain the results of [10, Chapter 7)
-

. exactly as the P(Z, ., € g;) arc used in the Markov process case of that
i reference. All the limit expressions carry over, with use of our action
:: functional Sg(T,) in lieu of the action functional S,e) of [10}.

-

n

A “_'._"n"... i

X |
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7.3. Stochastic approximation. Let a, > O, a, =0, [a, = ® The results of

Sections 1 to 5 can be carried over to the projected stochastic approximation

(SA)

xj+l = nq(xj + ljb(xj,{j)),

where we use the conditions on (gj} and b(.,-) of Section 2. Define
-1

t -nta, and the shifted processes
0

n n n . n
Xjp1 = Og(X; + ab(X;\¢)), j > n, X, = x,

n n

Y o Y

Tp = min (t: x"(t) { D).

References [8), [13] deal with the (unprojected) SA problem via large
deviations. It is easy to incorporate the method of [8) with the ’projected’
case of this paper, by accounting for the °'time varying’ scaling (a ). We cite
only one result (the Kiefer-Wolfowitz case can also be treated).

For a = 1/n, use the action functional
So(T0) = [ e*Lo(@, s,

L A L S N T T YRR IR RTINS . T .'.‘
- CAC A .‘_.'_‘. ALy J-..¢_.~\
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and for a = 1/n® a < 1, use Ss(T.9) = HLG(é',o_)ds. Then for
A < G[0,T},

- inf Sg(T,0) € lim a_ log P (x"(-) € A)
oc A =

¢ im a_ log P (x"(-) ¢ A)
n

¢ - inf Sg(Te) .
®cA

Let A= {&-) : &0) = x, ot) ¢ D, some t ¢ T), x ¢ D, where we define
© and D as Section 6. Then, under the °‘continuity’ condition on 8D just

. above Theorem 5,

lim li log P{vrg ¢ T} = - i T,e).
xl: im a, log P,(rp ¢ T) ng 84(T.¢)
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Fig.| Example of Escape and Flow Lines.
P(Escape is along boundary) —— I.
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